

Industrial Glass Insulation

About IGI

> Industrial Glass Insulation (IGI) was set up in 1989 in Mumbai.

- > The main objective of IGI is to produce high quality wires and cables, which are durable and safe.
- The CEO, Shri Omprakash Rajgarhia has decades of experience and knowledge in the field of manufacturing cables and electrical insulating material, particularly specialty wires and cables, which are meant for high temperature and high voltage applications.
- > The IGI team consists of a highly qualified and professional workforce that is dedicated at producing high quality products, using advanced imported machinery.
- > The practice of quality control includes continuous in-process inspections, laboratory examinations of product specifications and rigid testing of the finished goods.
- Along with the assurance of quality, IGI believes in providing prompt customer service through timely response and follow-up on all requests and queries.

Our Products

- > Nyvin Cables
- Silicon Cables
- Fibre Glass Wires & Cables
- PVC Insulated Cables
- PTFE Wires & Cables
- Fibre Glass based Insulating Material
- > Other cables designed as per customer specifications

Nyvin Cables

- > The British Standard states the requirement for 'Nyvin' type cables for aircraft wiring.
- Nyvin Cables are single Core, Annealed Tinned Copper Conducting, Heat Resistant (105°C) Poly Vinyl Chloride (HR-PVR) insulation cables with Fibre Glass Braiding and Nylon Braiding & Lacquering.
- These cables are ideal for use in Battery Cables, UPS Wiring, Battery Bank Interconnections, Control Panel Board Wiring, Electric Motors, Transformers, Generators, Invertors, Solar Power Equipment, Data Center Wiring and many others.

Features of Nyvin Cables

- ➢ Cost Effective
- > Higher Temperature Resistance as compared to Ordinary PVC Cables
- Oil & Water Resistant
- Abrasion Resistant
- High Current Carrying Capacity
- Light Weighted

PVC Cables vs. Nyvin Cables

PVC Cables	Nyvin Cables								
CONDUCTOR									
Bare copper conductor	Tinned copper conductor								
Result:	Result:								
The cable gets oxidized when it	The cable doesn't get oxidized and it is easy								
comes in contact with air.	to solder.								
PVC	INSULATION								
Ordinary PVC	HR PVC								
Result:	Result:								
The cable can stand a maximum	The cable can stand a maximum temperature								
temperature of 70°C	of 105°C								
FIBRE G	LASS BRAIDING								
Not Applicable	Fibreglass being a bad conductor ensures								
	fire-retardancy during fires.								
	It gives high mechanical strength to the								
	cable.								
NYLON BRAIDING & LACQUERING									
Not Applicable	Nylon adds to the thermal stability of the								
	cable.								
	The process of lacquering improves the								
	mechanical strength of the cable.								
	It makes the cable oil, water and abrasion								
	resistant.								

PVC Cables vs. Nyvin Cables

PVC	Cables	Uninyvin Cables						
Cable Size	Current	Cable Size	Area	Current				
(Sq.mm)	Rating	(Sq.mm)	(Sq.m)	Rating				
	(Amps)			(Amps)				
1.50	14	20	0.556	14				
2.50	19	18	0.966	18				
4.00	26	16	1.170	21				
6.00	6.00 33		2.050	31				
10.00	45	12	3.220	43				
16.00	60	10	5.330	61				
25.00	25.00 75		8.760	87				
35.00	35.00 95		13.300	115				
50.00	50.00 125		4 21.500					
70.00	170	2	33.300	200				
95.00	210	1	40.700	220				
120.00	235	0	53.000	240				
150.00	150.00 295		68.300	270				
		000	84.200	300				
		0000	109.000	350				

INDUSTRIAL GLASS INSULATION Nyvin Cables

CONDUCTOR						Radical Thickness of Insulation mm, min					Overall Dia of		Max, Cond.	Max. Cond.		Current
Cable Size	Nom. Area (mm ²) Heavy Duty Export Series (lug- m ²)	Duty Export	No. & Dia. of Wires	Dia (mm)		PVC	Nylon Sheath		Nylon Braid & Lacquer		Finished Cable (mm)		Resistance for 900 mts at	for 100 mts at	Max. Cond. Resistance for 1000	Rating Amps at 20°C
		lug- (mm)	Мах	Min	Min	Мах	Min	Max	Min	Max	Min	20°C (ohms)	105°C (ohms)	mts at 50°C (ohms)	Max	
22	0.347	0.5	19/0.152	0.838	0.7366	0.2286	0.1778	0.0762	-	-	2.0	1.8	49.66	7.50	61.63	14
20	0.556	0.5	19/0.193	1.041	0.9398	0.2286	0.1778	0.0762	-	-	2.3	2.0	30.95	4.68	38.41	18
18	0.966	1	33/0.193	1.321	1.2192	0.2286	0.1778	0.0762	-	-	2.5	2.3	17.82	2.69	22.11	23
16	1.17	1.5	40/0.193	1.549	1.397	0.2286	0.1778	0.0762	-	-	2.8	2.5	14.7	2.22	18.24	27
14	2.05	2.5	70/0.193	1.956	1.8034	0.2794	0.1778	0.0762	-	-	3.4	3.0	8.41	1.27	10.44	40
12	3.22	4	110/0.193	2.438	2.286	0.2794	0.1778	0.0762	-	-	3.8	3.5	5.35	0.81	6.64	55
10	5.33	6	75/0.3	3.15	2.8956	0.381	-	-	0.1778	0.0762	5.0	4.6	3.23	0.49	4.01	78
8	8.76	10	124/0.3	4.242	3.937	0.381	-	-	0.381	0.127	6.3	5.9	1.97	0.30	2.44	111
6	13.3	16	188/0.3	5.537	5.08	0.381	-	-	0.381	0.127	7.6	7.3	1.3	0.20	1.61	148
4	21.5	25	304/0.3	6.909	6.4516	0.4826	-	-	0.381	0.127	9.3	8.8	0.802	0.12	1.00	205
2	33.3	35	471/0.3	8.763	8.128	0.4826	-	-	0.381	0.127	11.0	10.5	0.517	0.08	0.64	256
1	40.7	50	575/0.3	9.754	9.1186	0.5588	-	-	0.381	0.127	12.2	11.7	0.423	0.06	0.53	282
0	53	70	749/0.3	10.97	10.338	0.635	-	-	0.381	0.127	13.7	13.0	0.325	0.05	0.40	308
00	68.3	70	965/0.3	12.45	11.684	0.6858	-	-	0.381	0.127	15.4	14.6	0.252	0.04	0.31	346
000	84.2	95	1190/0.3	13.92	13.157	0.762	-	-	0.381	0.127	16.9	16.1	0.204	0.03	0.25	384
0000	109	120	1545/0.3	15.62	14.859	0.7874	-	-	0.381	0.127	18.7	17.9	0.158	0.02	0.20	450

As Per G-177

INDUSTRIAL GLASS INSULATION

MAXIMUM CURRENT RATINGS FOR NYVIN & NYVINAL* CABLES

(AS PER G-177)

These current ratings are based on a temperature use of 40°C and allow for an ambient temperature of 65°C. The maximum permissible conductor temperature is 105°C. If the ambient temperature 't' continuously exceeds 65°C, the current ratings should be multiplied by the factor 'k' where, k= (105-t)

Nyvin	Nyvinal	N	faximum Con (Ar	tinuous Rat np)	ing			i mins. Ratir mp)	ıg	Maximum 1 min. Rating (Amp)				
		Single Cables in Free Air	3 Bunched Cables in Free Air	7 Bunched Cables in Free Air	12 Bunched Cables in Free Air	Single Cable in Free Air	3 Bunched Cables in Free Air	7 Bunched Cables in Free Air	12 Bunched Cables in Free Air	Single Cable in Free Air	3 Bunched Cables in Free Air	7 Bunched Cables in Free Air	12 Bunched Cables in Free Air	
22	-	11	7	5	4	12	8	7	6	15	12	9	9	
20	-	14	9	7	5	16	12	9	8	22	19	15	15	
18	-	18	13	10	6	23	17	13	12	30	26	19	18	
16	-	21	15	11	7	25	19	14	13	33	28	26	25	
14	-	31	24	17	12	36	28	24	21	50	47	43	42	
12	-	43	30	22	15	50	38	32	30	72	67	62	60	
10	8	61	47	36	25	71	56	48	45	110	107	104	101	
8	6	87	65	49	36	105	89	82	80	173	165	159	153	
6	4	115	87	65	-	152	122	115	-	250	236	230	-	
4	2	160	120	92	-	225	185	175	-	390	378	360	-	
2	0	200	155	120	-	305	265	250	-	454	530	520	-	
1	00	220	165	130	-	330	300	290	-	620	600	590	-	
0	000	240	185	168 ^	-	370	350	340	-	705	690	680	-	
00	0000	270	210/240 #	190 ^	-	420	410	405 ^	-	820	810	800 ^	-	
000	-	300	235/265 #	210 ^	-	470	460	455 ^	-	965	955	940 ^	-	
0000	-	350	270/350 #	245 ^	-	570	555	550 ^	-	1255	1240	1225 ^	-	

*The values for Nyvinal Cables have not been confirmed experimentally

Denotes two cables only

^ Denotes five cables only

40

Our Clients

- Reliance Industries Ltd.
- Bharat Heavy Electricals Ltd. (BHEL)
- > National Thermal Power Corporation Ltd. (NTPC)
- Indian Space Research Organisation (ISRO)
- > Schneider Electric I.T Business India Pvt. Ltd.
- > Delta Power Solution Pvt. Ltd.
- Amara Raja Electronics Ltd.
- > Emerson Network Power India Pvt. Ltd.
- ➢ Larsen & Toubro Ltd.
- Bharat Electronics Ltd.
- > Crompton Greaves Ltd.
- > ABB Ltd. and many others

Contact Details

INDUSTRIAL GLASS INSULATION

Building No. E-9, Gala No. 4, 5 & 6, Hari Har Compound, Mouje Dapoda, Mankoli Naka, Taluka Bhiwandi, Dist. Thane- 421 302 Maharashtra, INDIA

Contact Nos.: +91 9223685020/ 9223685021 Website: <u>www.igicables.com</u> E-mail: mail@igicables.com

bsi.

Certificate of Registration

QUALITY MANAGEMENT SYSTEM - ISO 9001:2008

This is to certify that:

Industrial Glass Insulation Building No. E-9, Gala No. 4,5 & 6 Hari Har Compound, Mouje Dapoda Taluka Bhivandi Thane 421 302 Maharashtra India

Holds Certificate No:

FM 574778

and operates a Quality Management System which complies with the requirements of ISO 9001:2008 for the following scope:

The manufacture and supply of insulated copper cables, wire harness, braided ropes and twines.

For and on behalf of BSI:

Gary Fenton, Global Assurance Director

Originally registered: 29/04/2011

/04/2011 Latest Issue: 12/02/2014

Expiry Date: 18/04/2017

Page: 1 of 1

...making excellence a habit."

This certificate was issued electronically and remains the property of BSI and is bound by the conditions of contract. An electronic certificate can be authenticated online.

Printed copies can be validated at www.bsi-global.com/ClientDirectory or telephone +91 11 2692 9000.

Further clarifications regarding the scope of this certificate and the applicability of ISO 9001.2008 requirements may be obtained by consulting the organization. This certificate is valid only if provided original copies are in complete set.

Information and Contact: BSI, Kitemark Court, Davy Avenue, Knowihill, Milton Keynes MK5 8/PP. Tel: + 44 945 080 9000 BSI Assurance UK Limited, registered in England under number 7805321 at 389 Chiswick High Road, London W4 4AL, UK. A Member of the BSI Group of Companies.